Coronavirus has caused hundreds of thousands of deaths. Fatalities could decrease if every patient could get suitable treatment by the healthcare system. Machine learning, especially computer vision methods based on deep learning, can help healthcare professionals diagnose and treat COVID-19 infected cases more efficiently. Hence, infected patients can get better service from the healthcare system and decrease the number of deaths caused by the coronavirus. This research proposes a method for segmenting infected lung regions in a CT image. For this purpose, a convolutional neural network with an attention mechanism is used to detect infected areas with complex patterns. Attention blocks improve the segmentation accuracy by focusing on informative parts of the image. Furthermore, a generative adversarial network generates synthetic images for data augmentation and expansion of small available datasets. Experimental results show the superiority of the proposed method compared to some existing procedures.
翻译:科罗纳病毒已造成数十万人死亡。如果每个病人都能得到保健系统的适当治疗,死亡可能会减少。机器学习,特别是基于深层学习的计算机视觉方法,可以帮助保健专业人员更高效地诊断和治疗COVID-19感染病例。因此,受感染的病人可以从保健系统得到更好的服务,并减少冠状病毒造成的死亡人数。这项研究提出了将受感染的肺部区域切除为CT图象的方法。为此目的,使用了带有关注机制的循环神经网络,以探测有复杂模式的受感染地区。注意区块通过注重图像的信息部分来提高分解的准确性。此外,基因对抗网络生成合成图像,以扩大和扩大小的可用数据集。实验结果显示,与某些现有程序相比,拟议方法的优越性。