COVID-19大流行继续对全球人口的健康和福祉产生破坏性影响。与COVID-19作斗争的一个关键步骤是对受感染患者进行有效的筛查,其中最关键的筛查方法之一是使用胸片进行放射成像。基于此,许多基于深度学习的人工智能(AI)系统被提出,结果显示在使用胸片图像检测COVID-19感染患者的准确性方面很有希望。然而,据作者所知,这些开发的人工智能系统是封闭的,研究社区无法对其进行更深入的理解和扩展,也无法对公众进行访问和使用。因此,在本研究中,我们引入COVID-Net,这是一种针对胸片图像中COVID-19的检测而设计的深度卷积神经网络,它是开源的,并且对公众开放。我们还描述了用于训练COVID-Net的胸片数据集,我们将其称为COVIDx,它由来自两个开放访问数据库的2839例患者的5941张前后胸片图像组成。此外,我们研究COVID- net如何使用可解释性方法进行预测,以获得与COVID病例相关的关键因素的更深入的了解,从而帮助临床医生改进筛选。决不生产就绪的解决方案,希望开放获取COVID-Net,随着描述构建开源COVIDx数据集,将杠杆,建立由研究人员和公民数据科学家们还都加快发展的高度准确的实际深度学习解决方案检测COVID-19病例和加速处理那些最需要的人。