Business optimisation is the process of finding and implementing efficient and cost-effective means of operation to bring a competitive advantage for businesses. Synthesizing problem formulations is an integral part of business optimisation which is centred around human expertise, thus with a high potential of becoming a bottleneck. With the recent advancements in Large Language Models (LLMs), human expertise needed in problem formulation can potentially be minimized using Artificial Intelligence (AI). However, developing a LLM for problem formulation is challenging, due to training data requirements, token limitations, and the lack of appropriate performance metrics in LLMs. To minimize the requirement of large training data, considerable attention has recently been directed towards fine-tuning pre-trained LLMs for downstream tasks, rather than training a LLM from scratch for a specific task. In this paper, we adopt this approach and propose an AI-Copilot for business optimisation by fine-tuning a pre-trained LLM for problem formulation. To address token limitations, we introduce modularization and prompt engineering techniques to synthesize complex problem formulations as modules that fit into the token limits of LLMs. In addition, we design performance evaluation metrics that are more suitable for assessing the accuracy and quality of problem formulations compared to existing evaluation metrics. Experiment results demonstrate that our AI-Copilot can synthesize complex and large problem formulations for a typical business optimisation problem in production scheduling.
翻译:暂无翻译