Active Internet measurements face challenges when some measurements require many remote vantage points. In this paper, we propose a novel technique for measuring remote IPv6 networks via side channels in ICMP rate limiting, a required function for IPv6 nodes to limit the rate at which ICMP error messages are generated. This technique, iVantage, can to some extent use 1.1M remote routers distributed in 9.5k autonomous systems and 182 countries as our "vantage points". We apply iVantage to two different, but both challenging measurement tasks: 1) measuring the deployment of inbound source address validation (ISAV) and 2) measuring reachability between arbitrary Internet nodes. We accomplish these two tasks from only one local vantage point without controlling the targets or relying on other services within the target networks. Our large-scale ISAV measurements cover ~50% of all IPv6 autonomous systems and find ~79% of them are vulnerable to spoofing, which is the most large-scale measurement study of IPv6 ISAV to date. Our method for reachability measurements achieves over 80% precision and recall in our evaluation. Finally, we perform an Internet-wide measurement of the ICMP rate limiting implementations, present a detailed discussion on ICMP rate limiting, particularly the potential security and privacy risks in the mechanism of ICMP rate limiting, and provide possible mitigation measures. We make our code available to the community.


翻译:当某些测量需要许多远程优势点时,主动的互联网测量将面临挑战。 在本文中,我们提出一种新的技术,通过IPCMP费率限制的侧渠道测量远程IPv6网络,这是IPv6节点的一个必要功能,以限制产生IPCMP错误信息的速度。这种技术,即iVantage,在某种程度上可以使用在9.5k自主系统和182个国家中分布的1.1M远程路由器作为我们的“优势点”。我们将iVantage应用于两种不同的但都具有挑战性的测量任务:1)衡量输入源地址验证(ISAV)的部署情况,2)衡量任意互联网节点之间的可达性。我们从一个本地的顶点完成这两项任务,而没有控制目标点或依靠目标网络中的其他服务。我们的大规模ISAV测量覆盖了所有IPv6自主系统和182个国家的50%,发现它们中的~79%容易受到吸附装置的影响,这是迄今为止IPv6 ISAV的最为大规模的测量研究。 我们的可达性测量方法达到80%以上,并在我们的评估中回顾。我们只从一个本地的优势点完成这两项任务,我们在限制IPCMP的全网域安全率,我们目前限制I的精确度的衡量标准,我们限制了I的精确度,我们对IPCMP的精确度的精确度的精确度的精确度的精确度和精确度的精确度做了一个限制。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
175+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年12月8日
Arxiv
0+阅读 · 2022年12月6日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
175+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员