Recent studies have used speech signals to assess depression. However, speech features can lead to serious privacy concerns. To address these concerns, prior work has used privacy-preserving speech features. However, using a subset of features can lead to information loss and, consequently, non-optimal model performance. Furthermore, prior work relies on a centralized approach to support continuous model updates, posing privacy risks. This paper proposes to use Federated Learning (FL) to enable decentralized, privacy-preserving speech analysis to assess depression. Using an existing dataset (DAIC-WOZ), we show that FL models enable a robust assessment of depression with only 4--6% accuracy loss compared to a centralized approach. These models also outperform prior work using the same dataset. Furthermore, the FL models have short inference latency and small memory footprints while being energy-efficient. These models, thus, can be deployed on mobile devices for real-time, continuous, and privacy-preserving depression assessment at scale.
翻译:最近的研究利用了语言信号来评估抑郁症。然而,语言特征可能导致严重的隐私问题。为解决这些关注问题,先前的工作使用了隐私保护语言特征。然而,使用一组特征可能导致信息丢失,从而导致非最佳模型性能。此外,先前的工作依赖于一种集中的方法来支持连续的模型更新,从而造成隐私风险。本文件提议使用Freed Learch(FL)进行分散的、隐私保护语言分析来评估抑郁症。我们利用现有的数据集(DAIC-WOZ),显示FL模型能够对抑郁症进行强有力的评估,与集中方法相比,只有4-6%的准确度损失。这些模型也比使用同一数据集的先前工作要差。此外,FL模型在节能的同时,也有短的内衣和小的记忆足迹。因此,这些模型可以部署在移动设备上,用于实时、连续和隐私保护的抑郁评估。