Subgraph detection has recently been one of the most studied problems in the CONGEST model of distributed computing. In this work, we study the distributed complexity of problems closely related to subgraph detection, mainly focusing on induced subgraph detection. The main line of this work presents lower bounds and parameterized algorithms w.r.t structural parameters of the input graph: -- On general graphs, we give unconditional lower bounds for induced detection of cycles and patterns of treewidth 2 in CONGEST. Moreover, by adapting reductions from centralized parameterized complexity, we prove lower bounds in CONGEST for detecting patterns with a 4-clique, and for induced path detection conditional on the hardness of triangle detection in the congested clique. -- On graphs of bounded degeneracy, we show that induced paths can be detected fast in CONGEST using techniques from parameterized algorithms, while detecting cycles and patterns of treewidth 2 is hard. -- On graphs of bounded vertex cover number, we show that induced subgraph detection is easy in CONGEST for any pattern graph. More specifically, we adapt a centralized parameterized algorithm for a more general maximum common induced subgraph detection problem to the distributed setting. In addition to these induced subgraph detection results, we study various related problems in the CONGEST and congested clique models, including for multicolored versions of subgraph-detection-like problems.


翻译:最近,地下检测是CONGEST分布式计算模型中研究最多的问题之一。在这项工作中,我们研究了与子检测密切相关的问题的分布式复杂性,主要侧重于诱导子检测。这项工作的主线显示输入图结构参数的下限和参数化算法参数: -- 在一般图解中,我们给诱导检测CONGEST中树线2循环和模式提供了无条件的下限界限。此外,通过调整集中参数复杂度的减少,我们证明CONGEST中的诱导子检测范围较低,以便用四分形探测模式探测模式和导导路径检测路径,主要以凝结结的三角探测的硬性为条件。 -- 在捆绑式逻辑化算法中,我们用参数化算法技术来快速检测CONGEST的诱导路径,同时探测树线2的循环和模式非常难。 -- 在捆绑式的脊椎覆盖数字的图表中,我们证明CONGEST中导导导测路径比较容易为任何模式。更具体地,我们调整了一个中央参数化参数化的分类测算法,这些相关的子测算结果,以研究为共同的CEON 。我们将这些导测算法的子测算方法的深度测测为共同的深度测算问题,包括C。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
6+阅读 · 2019年11月14日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
Top
微信扫码咨询专知VIP会员