We address the problem of solving strongly convex and smooth minimization problems using stochastic gradient descent (SGD) algorithm with a constant step size. Previous works suggested to combine the Polyak-Ruppert averaging procedure with the Richardson-Romberg extrapolation to reduce the asymptotic bias of SGD at the expense of a mild increase of the variance. We significantly extend previous results by providing an expansion of the mean-squared error of the resulting estimator with respect to the number of iterations $n$. We show that the root mean-squared error can be decomposed into the sum of two terms: a leading one of order $\mathcal{O}(n^{-1/2})$ with explicit dependence on a minimax-optimal asymptotic covariance matrix, and a second-order term of order $\mathcal{O}(n^{-3/4})$, where the power $3/4$ is best known. We also extend this result to the higher-order moment bounds. Our analysis relies on the properties of the SGD iterates viewed as a time-homogeneous Markov chain. In particular, we establish that this chain is geometrically ergodic with respect to a suitably defined weighted Wasserstein semimetric.
翻译:暂无翻译