We introduce an adversarial learning framework, which we named KBGAN, to improve the performances of a wide range of existing knowledge graph embedding models. Because knowledge graph datasets typically only contain positive facts, sampling useful negative training examples is a non-trivial task. Replacing the head or tail entity of a fact with a uniformly randomly selected entity is a conventional method for generating negative facts used by many previous works, but the majority of negative facts generated in this way can be easily discriminated from positive facts, and will contribute little towards the training. Inspired by generative adversarial networks (GANs), we use one knowledge graph embedding model as a negative sample generator to assist the training of our desired model, which acts as the discriminator in GANs. The objective of the generator is to generate difficult negative samples that can maximize their likeliness determined by the discriminator, while the discriminator minimizes its training loss. This framework is independent of the concrete form of generator and discriminator, and therefore can utilize a wide variety of knowledge graph embedding models as its building blocks. In experiments, we adversarially train two translation-based models, TransE and TransD, each with assistance from one of the two probability-based models, DistMult and ComplEx. We evaluate the performances of KBGAN on the link prediction task, using three knowledge base completion datasets: FB15k-237, WN18 and WN18RR. Experimental results show that adversarial training substantially improves the performances of target embedding models under various settings.


翻译:我们推出了一个对抗性学习框架,我们称之为KBGAN, 目的是改进现有知识图嵌入模型的广泛范围。 因为知识图数据集通常只包含正面事实, 抽样使用有用的负面培训实例是一项非三重任务。 将事实的首级或尾部实体替换成一个统一随机选择的实体是一个常规方法, 用来产生许多以前作品所使用的负面事实, 但以这种方式产生的大多数负面事实很容易与正面事实区分开来, 并且对培训贡献甚微。 受基因化对抗网络( GANs) 的启发, 我们使用一个知识图嵌入模型作为负面样本生成器, 协助培训我们所希望的模型, 这模型在GANs中起着指导作用。 生成者的目标是生成困难的负面样本, 使歧视者能够最大限度地增加其先前许多作品中所确定的相似性, 而歧视者则最大限度地减少其培训损失。 这个框架独立于生成者和制导师的具体形式, 因此, 能够使用多种知识图形嵌入模型作为其建筑块。 在实验中, 我们用两个对正对的实验性实验性实验性实验性实验模型, 用两个基于翻译的模型, Train-G Trans- train train train train train train train train train 3 train sal sal sal sal squal squewmal sal squal squal squald the:

6
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
20+阅读 · 2019年9月7日
Logic Rules Powered Knowledge Graph Embedding
Arxiv
7+阅读 · 2019年3月9日
Arxiv
7+阅读 · 2018年8月21日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
5+阅读 · 2018年5月21日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员