In this paper, we establish the theory of chaos propagation and propose an Euler-Maruyama scheme for McKean-Vlasov stochastic differential equations driven by fractional Brownian motion with Hurst exponent $H \in (0,1)$. Meanwhile, upper bounds for errors in the Euler method is obtained. A numerical example is demonstrated to verify the theoretical results.
翻译:在本文中,我们确立了混乱传播理论,并提出了一个由分数布朗运动驱动的麦肯-弗拉索夫软体差异方程式的欧勒-马鲁山方案,由赫斯特出名$H $@in (0,1) 驱动。与此同时,还获得了欧勒方法错误的上限。一个数字实例可以用来验证理论结果。