Generating wind power scenarios is very important for studying the impacts of multiple wind farms that are interconnected to the grid. We develop a graph convolutional generative adversarial network (GCGAN) approach by leveraging GAN's capability in generating large number of realistic scenarios without using statistical modeling. Unlike existing GAN-based wind power data generation approaches, we design GAN's hidden layers to match the underlying spatial and temporal characteristics. We advocate the use of graph filters to embed the spatial correlation among multiple wind farms, and a one-dimensional (1D) convolutional layer to represent the temporal feature filters. The proposed graph and feature filter design significantly reduce the GAN model complexity, leading to improvements in training efficiency and computation complexity. Numerical results using real wind power data from Australia demonstrate that the scenarios generated by the proposed GCGAN exhibit more realistic spatial and temporal statistics than other GAN-based outputs.
翻译:产生风力情景对于研究与电网相连的多个风力农场的影响非常重要。我们开发了图形变异基因对抗网络(GCGAN)方法,利用GAN在不使用统计模型的情况下生成大量现实情景的能力。与现有的以GAN为基础的风力数据生成方法不同,我们设计GAN的隐藏层与潜在的空间和时间特征相匹配。我们主张使用图形过滤器将多个风力农场之间的空间相关性嵌入其中,并使用一维(1D)相向层来代表时间特征过滤器。拟议的图形和特征过滤器设计大大降低了GAN模型的复杂性,从而导致培训效率和计算复杂性的提高。使用澳大利亚实际风力数据得出的数值结果表明,拟议的GCGAN生成的情景比其他以GAN为基础的产出更现实的时空统计数据。