Generating wind power scenarios is very important for studying the impacts of multiple wind farms that are interconnected to the grid. We develop a graph convolutional generative adversarial network (GCGAN) approach by leveraging GAN's capability in generating large number of realistic scenarios without using statistical modeling. Unlike existing GAN-based wind power data generation approaches, we design GAN's hidden layers to match the underlying spatial and temporal characteristics. We advocate the use of graph filters to embed the spatial correlation among multiple wind farms, and a one-dimensional (1D) convolutional layer to represent the temporal feature filters. The proposed graph and feature filter design significantly reduce the GAN model complexity, leading to improvements in training efficiency and computation complexity. Numerical results using real wind power data from Australia demonstrate that the scenarios generated by the proposed GCGAN exhibit more realistic spatial and temporal statistics than other GAN-based outputs.


翻译:产生风力情景对于研究与电网相连的多个风力农场的影响非常重要。我们开发了图形变异基因对抗网络(GCGAN)方法,利用GAN在不使用统计模型的情况下生成大量现实情景的能力。与现有的以GAN为基础的风力数据生成方法不同,我们设计GAN的隐藏层与潜在的空间和时间特征相匹配。我们主张使用图形过滤器将多个风力农场之间的空间相关性嵌入其中,并使用一维(1D)相向层来代表时间特征过滤器。拟议的图形和特征过滤器设计大大降低了GAN模型的复杂性,从而导致培训效率和计算复杂性的提高。使用澳大利亚实际风力数据得出的数值结果表明,拟议的GCGAN生成的情景比其他以GAN为基础的产出更现实的时空统计数据。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
60+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
201+阅读 · 2019年9月30日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月6日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
15+阅读 · 2018年4月5日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员