The integration and transfer of information from multiple sources to multiple targets is a core motive of neural systems. The emerging field of partial information decomposition (PID) provides a novel information-theoretic lens into these mechanisms by identifying synergistic, redundant, and unique contributions to the mutual information between one and several variables. While many works have studied aspects of PID for Gaussian and discrete distributions, the case of general continuous distributions is still uncharted territory. In this work we present a method for estimating the unique information in continuous distributions, for the case of one versus two variables. Our method solves the associated optimization problem over the space of distributions with fixed bivariate marginals by combining copula decompositions and techniques developed to optimize variational autoencoders. We obtain excellent agreement with known analytic results for Gaussians, and illustrate the power of our new approach in several brain-inspired neural models. Our method is capable of recovering the effective connectivity of a chaotic network of rate neurons, and uncovers a complex trade-off between redundancy, synergy and unique information in recurrent networks trained to solve a generalized XOR task.
翻译:从多种来源向多个目标整合和传递信息是神经系统的一个核心动机。部分信息分解(PID)的新兴领域为这些机制提供了一个全新的信息理论透镜,通过查明协同性、冗余性和对一个变量和几个变量之间相互信息的独特贡献,为这些机制提供了一个全新的信息理论透镜。虽然许多工作研究了高斯和离散分布PID的方方面面,但一般连续分布仍是未知领域。在这项工作中,我们为一个变量和两个变量的连续分布提供了一种估算独特信息的方法。我们的方法通过结合为优化变异自动生成者而开发的相交织器和技术,解决了与固定双差边缘分布空间相关的优化问题。我们与高斯人已知的解析结果达成了极好的协议,并展示了我们在若干大脑启发型神经模型中的新方法的力量。我们的方法能够恢复一个波流神经元网络的有效连通性连接,并发现在经过培训的用于解决普遍XOR任务的经常性网络中的冗余、协同性和独特信息之间的复杂交易。