We are interested in unsupervised reconstruction of complex near-capillary vasculature with thousands of bifurcations where supervision and learning are infeasible. Unsupervised methods can use many structural constraints, e.g. topology, geometry, physics. Common techniques use variants of MST on geodesic tubular graphs minimizing symmetric pairwise costs, i.e. distances. We show limitations of such standard undirected tubular graphs producing typical errors at bifurcations where flow "directedness" is critical. We introduce a new general concept of confluence for continuous oriented curves forming vessel trees and show how to enforce it on discrete tubular graphs. While confluence is a high-order property, we present an efficient practical algorithm for reconstructing confluent vessel trees using minimum arborescence on a directed graph enforcing confluence via simple flow-extrapolating arc construction. Empirical tests on large near-capillary sub-voxel vasculature volumes demonstrate significantly improved reconstruction accuracy at bifurcations. Our code has also been made publicly available.
翻译:我们感兴趣的是,在没有监督的情况下重建复杂的近毛虫血管结构,有数千个两面结构,在这种两面结构中,监督和学习是行不通的。未经监督的方法可以使用许多结构性限制,例如地形学、几何学和物理学。常见技术在大地管状图上使用MST的变体,以尽量减少对称对称对称对称成本。在流动“方向性”至关重要的两面结构中,这种标准的无方向管状图会产生典型的错误。我们引入了一种关于连续方向曲线汇合形成船只树木的新的一般概念,并表明如何在离散管状图上执行。虽然这种相干特性很高,但我们展示了一种有效的实用算法,用以利用最小的电弧法,通过简单的流向外推弧弧构造,在定向图中进行牵引作用。关于大型近毛线子蒸气管流的实验表明,在两面构造上重建的精确度显著提高。我们的代码也是公开提供的。