Zeros of rational transfer function matrices $R(\lambda)$ are the eigenvalues of associated polynomial system matrices $P(\lambda)$, under minimality conditions. In this paper we define a structured condition number for a simple eigenvalue $\lambda_0$ of a (locally) minimal polynomial system matrix $P(\lambda)$, which in turn is a simple zero $\lambda_0$ of its transfer function matrix $R(\lambda)$. Since any rational matrix can be written as the transfer function of a polynomial system matrix, our analysis yield a structured perturbation theory for simple zeros of rational matrices $R(\lambda)$. To capture all the zeros of $R(\lambda)$, regardless of whether they are poles or not, we consider the notion of root vectors. As corollaries of the main results, we pay particular attention to the special case of $\lambda_0$ being not a pole of $R(\lambda)$ since in this case the results get simpler and can be useful in practice. We also compare our structured condition number with Tisseur's unstructured condition number for eigenvalues of matrix polynomials, and show that the latter can be unboundedly larger. Finally, we corroborate our analysis by numerical experiments.


翻译:合理转移函数矩阵的零值 $R (\ lambda) $R (\ lambda) 是相关多元系统矩阵在最低条件条件下的外值 $P (\ lambda) 。 在本文中, 我们定义了一个简单的( 本地) 最小多元系统矩阵的结构性条件值$\ lambda_ 0美元( 本地) $P (\ lambda) $( lambda) $( lambda) $ (美元) 。 由于任何合理的矩阵可以写成一个多边系统矩阵的转移函数 $P (\ lambda) $( lambda) $( lambda) $( 当地) 最低( 当地) 最低多元系统矩阵矩阵 $( $ ( lambda) $ ( lambda) $ ( ) $ ( 当地) 0. 0 $( 当地) ) 最低组合系统矩阵 $ ( $ ( ) $ ( lambbda) $ ( lambda) ) ) $ ( 0) $ ( 0) $ ( ) 美元) 美元 ( 美元) 美元 美元 美元 美元 美元) 美元 ( 美元) 美元) 美元 ( 美元) 美元) 美元 ( 美元) 美元) 美元( 美元) 美元) 美元( 美元) 美元) 美元( 美元) 美元( 美元) 美元) 美元( 美元) 美元) 美元( 美元) 美元( 美元) 美元) 美元( 美元) 美元( 美元) 美元) 美元( 美元) 美元( 美元) 美元) ) ) 美元( 美元) 美元( 美元( 美元) 美元) 美元) 美元( 美元) 美元) 美元) 美元( 美元) 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元) 美元) 美元) 美元) 美元) 美元) 美元( 美元( 美元) 美元) 美元) 美元) 美元) 美元) 美元(

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月8日
$H^2$-conformal approximation of Miura surfaces
Arxiv
0+阅读 · 2022年9月7日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员