While semantic communication is expected to bring unprecedented communication efficiency in comparison to classical communication, many challenges must be resolved to realize its potential. In this work, we provide a realistic semantic network dubbed seq2seq-SC, which is compatible to 5G NR and can work with generalized text dataset utilizing pre-trained language model. We also utilize a performance metric (SBERT) which can accurately measure semantic similarity and show that seq2seq-SC achieves superior performance while extracting semantically meaningful information.
翻译:虽然与传统通信相比,语义通信有望带来前所未有的通信效率,但必须解决许多挑战,才能实现其潜力。在这项工作中,我们提供了一个现实的语义网络,称为后继2seq-SC,这个网络与5G NR兼容,可以使用预先培训的语言模式与通用文本数据集合作。我们还使用一种性能衡量标准(SBERT),该标准可以准确测量语义相似性,并表明后继2seq-SC在提取具有语义意义的信息的同时,取得了优异的性能。