Recently, diffusion probabilistic models (DPMs) have achieved promising results in diverse generative tasks. A typical DPM framework includes a forward process that gradually diffuses the data distribution and a reverse process that recovers the data distribution from time-dependent data scores. In this work, we observe that the stochastic reverse process of data scores is a martingale, from which concentration bounds and the optional stopping theorem for data scores can be derived. Then, we discover a simple way for calibrating an arbitrary pretrained DPM, with which the score matching loss can be reduced and the lower bounds of model likelihood can consequently be increased. We provide general calibration guidelines under various model parametrizations. Our calibration method is performed only once and the resulting models can be used repeatedly for sampling. We conduct experiments on multiple datasets to empirically validate our proposal. Our code is at https://github.com/thudzj/Calibrated-DPMs.
翻译:最近,扩散概率模型(DPMs)在不同基因化任务中取得了可喜的成果。典型的DPM框架包括一个前方进程,逐步分散数据分布,以及一个从根据时间确定的数据分数中恢复数据分布的反向进程。在这项工作中,我们观察到数据分数的随机反向过程是一个马丁格尔过程,从中可以得出集中界限和数据分数的可选停止标本。然后,我们发现了一个简单的方法来校准一个任意的预先训练的DPM,这样可以减少得分匹配损失,从而提高模型概率的下限。我们根据各种模型的参数提供了一般校准指南。我们的校准方法只能进行一次,由此产生的模型可以反复用于取样。我们在多个数据集上进行实验,以实验方式验证我们的提案。我们的代码在 https://github.com/thudzj/Calibraed-DPMs。