Surrogate kernel-based methods offer a flexible solution to structured output prediction by leveraging the kernel trick in both input and output spaces. In contrast to energy-based models, they avoid to pay the cost of inference during training, while enjoying statistical guarantees. However, without approximation, these approaches are condemned to be used only on a limited amount of training data. In this paper, we propose to equip surrogate kernel methods with approximations based on sketching, seen as low rank projections of feature maps both on input and output feature maps. We showcase the approach on Input Output Kernel ridge Regression (or Kernel Dependency Estimation) and provide excess risk bounds that can be in turn directly plugged on the final predictive model. An analysis of the complexity in time and memory show that sketching the input kernel mostly reduces training time while sketching the output kernel allows to reduce the inference time. Furthermore, we show that Gaussian and sub-Gaussian sketches are admissible sketches in the sense that they induce projection operators ensuring a small excess risk. Experiments on different tasks consolidate our findings.
翻译:以覆盖内核为基础的方法为结构化输出预测提供了一个灵活的解决方案,在输入和输出空间中利用内核把戏。 与以能源为基础的模型相比,它们避免在培训期间支付推断费用,同时享有统计保障。 但是,在没有近似的情况下,这些方法只能用于数量有限的培训数据。 在本文中,我们提议为代内核方法配备基于素描的近似值,这被视为对输入和输出地貌地图上地貌图的低级别预测。 我们展示了输入内核脊反射(或核心依赖性估计)的方法,并提供了可反过来直接插入最后预测模型的超重风险界限。对时间和记忆的复杂性的分析表明,在绘制输入内核内核素描时,主要减少了培训时间,而产出内核的草图则可以减少推断时间。 此外,我们表明,Gausian 和 oussian 子素描草图是可以接受的草图,因为可以引导投影操作者确保小的超重风险。