Optimal Transport (OT) metrics allow for defining discrepancies between two probability measures. Wasserstein distance is for longer the celebrated OT-distance frequently-used in the literature, which seeks probability distributions to be supported on the $\textit{same}$ metric space. Because of its high computational complexity, several approximate Wasserstein distances have been proposed based on entropy regularization or on slicing, and one-dimensional Wassserstein computation. In this paper, we propose a novel extension of Wasserstein distance to compare two incomparable distributions, that hinges on the idea of $\textit{distributional slicing}$, embeddings, and on computing the closed-form Wassertein distance between the sliced distributions. We provide a theoretical analysis of this new divergence, called $\textit{heterogeneous Wasserstein discrepancy (HWD)}$, and we show that it preserves several interesting properties including rotation-invariance. We show that the embeddings involved in HWD can be efficiently learned. Finally, we provide a large set of experiments illustrating the behavior of HWD as a divergence in the context of generative modeling and in query framework.
翻译:最佳运输(OT) 衡量标准允许界定两种概率度量之间的差异。 瓦瑟斯坦距离是文献中常用的已知的OT- 距离更长的时间, 文献中经常使用的有名的OT- 距离寻求概率分布, 以$\ textit{same} $ 公吨空间支持。 由于其计算复杂程度高, 提出了几处大致瓦瑟斯坦距离的建议, 其依据是 entropy 正规化或切片, 以及一维瓦瑟斯坦计算 。 在本文中, 我们提议将瓦瑟斯坦距离的新扩展为新的范围, 以比较两种无法比较的分布, 这取决于 $\ textit{ 分布切除 } 、 嵌入式和 计算切片分布之间的闭式瓦瑟丁距离。 我们对这一新的差异进行了理论分析, 称为 $\ textitilitititit {hetergenous Wasserstein difference (HWHWD)} $, 我们证明它保存了包括旋转不易性等在内的一些有趣的特性。 我们表明, 嵌入 HWD 中可以有效地了解。 最后, 我们提供了一套模型, 解释性框架的模型。