We propose a series of quantum algorithms for computing a wide range of quantum entropies and distances, including the von Neumann entropy, quantum R\'{e}nyi entropy, trace distance, and fidelity. The proposed algorithms significantly outperform the prior best (and even quantum) ones in the low-rank case, some of which achieve exponential speedups. In particular, for $N$-dimensional quantum states of rank $r$, our proposed quantum algorithms for computing the von Neumann entropy, trace distance and fidelity within additive error $\varepsilon$ have time complexity of $\tilde O(r/\varepsilon^2)$, $\tilde O(r^5/\varepsilon^6)$ and $\tilde O(r^{6.5}/\varepsilon^{7.5})$, respectively. By contrast, prior quantum algorithms for the von Neumann entropy and trace distance usually have time complexity $\Omega(N)$, and the prior best one for fidelity has time complexity $\tilde O(r^{12.5}/\varepsilon^{13.5})$. The key idea of our quantum algorithms is to extend block-encoding from unitary operators in previous work to quantum states (i.e., density operators). It is realized by developing several convenient techniques to manipulate quantum states and extract information from them. The advantage of our techniques over the existing methods is that no restrictions on density operators are required; in sharp contrast, the previous methods usually require a lower bound on the minimal non-zero eigenvalue of density operators.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员