Learning effective joint embedding for cross-modal data has always been a focus in the field of multimodal machine learning. We argue that during multimodal fusion, the generated multimodal embedding may be redundant, and the discriminative unimodal information may be ignored, which often interferes with accurate prediction and leads to a higher risk of overfitting. Moreover, unimodal representations also contain noisy information that negatively influences the learning of cross-modal dynamics. To this end, we introduce the multimodal information bottleneck (MIB), aiming to learn a powerful and sufficient multimodal representation that is free of redundancy and to filter out noisy information in unimodal representations. Specifically, inheriting from the general information bottleneck (IB), MIB aims to learn the minimal sufficient representation for a given task by maximizing the mutual information between the representation and the target and simultaneously constraining the mutual information between the representation and the input data. Different from general IB, our MIB regularizes both the multimodal and unimodal representations, which is a comprehensive and flexible framework that is compatible with any fusion methods. We develop three MIB variants, namely, early-fusion MIB, late-fusion MIB, and complete MIB, to focus on different perspectives of information constraints. Experimental results suggest that the proposed method reaches state-of-the-art performance on the tasks of multimodal sentiment analysis and multimodal emotion recognition across three widely used datasets. The codes are available at \url{https://github.com/TmacMai/Multimodal-Information-Bottleneck}.


翻译:我们争辩说,在多式联运混合过程中,生成的多式联运嵌入可能是多余的,而歧视性的单式信息可能被忽视,这往往干扰准确的预测,并导致过度配置的更大风险。此外,单式表述还包含对跨模式动态学习产生不利影响的噪音信息。为此,我们引入了多式联运信息瓶颈(MIB),目的是学习一个强大和充足的多式联运代表形式,这种代表形式没有冗余,在单式表达形式中过滤噪音信息。具体地说,从一般信息瓶式(IB)中继承,IMB的目的是通过最大限度地增加代表性与目标之间的相互信息,同时限制代表性与输入数据之间的相互信息。不同于IB,我们引入了多式联运和单式表达形式,这是与任何融合方法兼容的全面和灵活的框架。我们开发了三个MIB变式变量,即MIB早期版本、IMB晚期/多式情感分析模式分析模式,目的是了解特定任务中最起码的代表权,同时限制代表形式和输入数据数据数据数据数据数据数据。IMB的拟议格式分析侧重于三种模式。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
68+阅读 · 2022年9月7日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员