The problem of combinatorial filter reduction arises from questions of resource optimization in robots; it is one specific way in which automation can help to achieve minimalism, to build better, simpler robots. This paper contributes a new definition of filter minimization that is broader than its antecedents, allowing filters (input, output, or both) to be nondeterministic. This changes the problem considerably. Nondeterministic filters are able to re-use states to obtain, essentially, more 'behavior' per vertex. We show that the gap in size can be significant (larger than polynomial), suggesting such cases will generally be more challenging than deterministic problems. Indeed, this is supported by the core computational complexity result established in this paper: producing nondeterministic minimizers is PSPACE-hard. The hardness separation for minimization which exists between deterministic filter and deterministic automata, thus, does not hold for the nondeterministic case.
翻译:组合过滤器的减少问题产生于机器人的资源优化问题; 这是自动化可以帮助实现最小化、建设更好、更简单的机器人的一种具体方式。 本文提供了一个新的过滤器最小化定义, 其范围比预兆要广, 允许过滤器( 输入、 输出或两者) 不具有确定性。 这极大地改变了问题。 非确定性过滤器能够重新使用国家, 基本上获得更多“ 行为” 的顶端。 我们显示, 大小差距可能很大( 比多数值大 ), 表明这类情况通常比确定性问题更具挑战性。 事实上, 这得到本文确定的核心计算复杂性结果的支持: 生成非确定性最小化的最小化器是硬的 SPACE 。 因此, 确定性过滤器和确定性自动数据之间存在的最小化的硬性分解, 这对于非确定性案例来说并不有效 。