Contrastive learning is a discriminative approach that aims at grouping similar samples closer and diverse samples far from each other. It it an efficient technique to train an encoder generating distinguishable and informative representations, and it may even increase the encoder's transferability. Most current applications of contrastive learning benefit only a single representation from the last layer of an encoder.In this paper, we propose a multi-level contrasitive learning approach which applies contrastive losses at different layers of an encoder to learn multiple representations from the encoder. Afterward, an ensemble can be constructed to take advantage of the multiple representations for the downstream tasks. We evaluated the proposed method on few-shot learning problems and conducted experiments using the mini-ImageNet and the tiered-ImageNet datasets. Our model achieved the new state-of-the-art results for both datasets, comparing to previous regular, ensemble, and contrastive learing (single-level) based approaches.


翻译:对比性学习是一种歧视性方法,旨在将相似的样本更接近、更多样化的样本相互区分,这是一种有效的技术,可以训练一个能产生可区分和资料性陈述的编码器,甚至可以增加编码器的可转移性。目前大多数对比性学习应用只有利于从编码器最后一层中划出一个单一的表示。在本文中,我们建议一种多层次的对比性学习方法,在编码器的不同层中应用对比性损失来从编码器中学习多个表达。随后,可以构建一个共合体,利用下游任务的多重表述。我们评估了关于少数截图学习问题的拟议方法,并利用微型图像网络和分层图像网络数据集进行了实验。我们的模式与以往的常规、多元素和对比性循环(单层)方法相比,实现了两个数据集的新状态的艺术结果。

0
下载
关闭预览

相关内容

专知会员服务
88+阅读 · 2021年6月29日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
小样本学习(Few-shot Learning)综述
机器之心
18+阅读 · 2019年4月1日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
7+阅读 · 2020年10月9日
Arxiv
14+阅读 · 2019年9月11日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
Arxiv
11+阅读 · 2018年7月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
小样本学习(Few-shot Learning)综述
机器之心
18+阅读 · 2019年4月1日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员