The complexity of the promise constraint satisfaction problem $\operatorname{PCSP}(\mathbf{A},\mathbf{B})$ is largely unknown, even for symmetric $\mathbf{A}$ and $\mathbf{B}$, except for the case when $\mathbf{A}$ and $\mathbf{B}$ are Boolean. First, we establish a dichotomy for $\operatorname{PCSP}(\mathbf{A},\mathbf{B})$ where $\mathbf{A}, \mathbf{B}$ are symmetric, $\mathbf{B}$ is functional (i.e. any $r-1$ elements of an $r$-ary tuple uniquely determines the last one), and $(\mathbf{A},\mathbf{B})$ satisfies technical conditions we introduce called dependency and additivity. This result implies a dichotomy for $\operatorname{PCSP}(\mathbf{A},\mathbf{B})$ with $\mathbf{A},\mathbf{B}$ symmetric and $\mathbf{B}$ functional if (i) $\mathbf{A}$ is Boolean, or (ii) $\mathbf{A}$ is a hypergraph of a small uniformity, or (iii) $\mathbf{A}$ has a relation $R^{\mathbf{A}}$ of arity at least 3 such that the hypergraph diameter of $(A, R^{\mathbf{A}})$ is at most 1. Second, we show that for $\operatorname{PCSP}(\mathbf{A},\mathbf{B})$, where $\mathbf{A}$ and $\mathbf{B}$ contain a single relation, $\mathbf{A}$ satisfies a technical condition called balancedness, and $\mathbf{B}$ is arbitrary, the combined basic linear programming relaxation (BLP) and the affine integer programming relaxation (AIP) is no more powerful than the (in general strictly weaker) AIP relaxation. Balanced $\mathbf{A}$ include symmetric $\mathbf{A}$ or, more generally, $\mathbf{A}$ preserved by a transitive permutation group.


翻译:

0
下载
关闭预览

相关内容

牛津大学最新《计算代数拓扑》笔记书,107页pdf
专知会员服务
42+阅读 · 2022年2月17日
专知会员服务
21+阅读 · 2021年6月28日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
84+阅读 · 2020年12月5日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
超简单正则表达式入门教程
极市平台
1+阅读 · 2022年11月5日
代码推荐 | 轻松实现各种图匹配 Graph matching.
图与推荐
2+阅读 · 2022年10月22日
2 个简单的功能,让你天天都过「520」
少数派
0+阅读 · 2022年5月21日
基于几何特征的激光雷达地面点云分割
泡泡机器人SLAM
15+阅读 · 2018年4月1日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年6月6日
Arxiv
0+阅读 · 2023年6月5日
VIP会员
相关VIP内容
牛津大学最新《计算代数拓扑》笔记书,107页pdf
专知会员服务
42+阅读 · 2022年2月17日
专知会员服务
21+阅读 · 2021年6月28日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
84+阅读 · 2020年12月5日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
超简单正则表达式入门教程
极市平台
1+阅读 · 2022年11月5日
代码推荐 | 轻松实现各种图匹配 Graph matching.
图与推荐
2+阅读 · 2022年10月22日
2 个简单的功能,让你天天都过「520」
少数派
0+阅读 · 2022年5月21日
基于几何特征的激光雷达地面点云分割
泡泡机器人SLAM
15+阅读 · 2018年4月1日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员