Most of existing outlier detection methods assume that the outlier factors (i.e., outlierness scoring measures) of data entities (e.g., feature values and data objects) are Independent and Identically Distributed (IID). This assumption does not hold in real-world applications where the outlierness of different entities is dependent on each other and/or taken from different probability distributions (non-IID). This may lead to the failure of detecting important outliers that are too subtle to be identified without considering the non-IID nature. The issue is even intensified in more challenging contexts, e.g., high-dimensional data with many noisy features. This work introduces a novel outlier detection framework and its two instances to identify outliers in categorical data by capturing non-IID outlier factors. Our approach first defines and incorporates distribution-sensitive outlier factors and their interdependence into a value-value graph-based representation. It then models an outlierness propagation process in the value graph to learn the outlierness of feature values. The learned value outlierness allows for either direct outlier detection or outlying feature selection. The graph representation and mining approach is employed here to well capture the rich non-IID characteristics. Our empirical results on 15 real-world data sets with different levels of data complexities show that (i) the proposed outlier detection methods significantly outperform five state-of-the-art methods at the 95%/99% confidence level, achieving 10%-28% AUC improvement on the 10 most complex data sets; and (ii) the proposed feature selection methods significantly outperform three competing methods in enabling subsequent outlier detection of two different existing detectors.


翻译:大多数现有异常探测方法都假定,数据实体(例如,特征值和数据对象)的异常因素(即超值评分尺度)是独立和同分布的(IID)。这一假设在现实应用中并不存在,因为不同实体的异常性取决于彼此,并且/或者从不同概率分布(非IID)中取出。这可能导致无法发现重要异常因素(即超值评分尺度),这些差异因素在不考虑非IID性质的情况下难以识别。在更具挑战性的环境中,问题甚至更加严重,例如,具有许多噪音特征的高维数据。这项工作引入了一个新颖的超值检测框架,以及它的两个实例,即通过捕捉非II异度因素来识别绝对数据中的异常值。我们的方法首先界定并纳入对分布敏感的外部因素及其相互依存性,然后在价值图表中建模一个异常的传播过程,以了解特性值的异常性特性特性特性。所学的超值使得直接检测超出或超出最吵的地特性。这项工作引入了一个新的超值框架框架框架框架框架,在15种不同的数据中,图形代表和数据使用不同的数据方法。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Arxiv
0+阅读 · 2021年5月12日
Arxiv
13+阅读 · 2021年3月3日
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
Scale-Aware Trident Networks for Object Detection
Arxiv
4+阅读 · 2019年1月7日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
相关资讯
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Top
微信扫码咨询专知VIP会员