For acute ischemic stroke (AIS) patients with large vessel occlusions, clinicians must decide if the benefit of mechanical thrombectomy (MTB) outweighs the risks and potential complications following an invasive procedure. Pre-treatment computed tomography (CT) and angiography (CTA) are widely used to characterize occlusions in the brain vasculature. If a patient is deemed eligible, a modified treatment in cerebral ischemia (mTICI) score will be used to grade how well blood flow is reestablished throughout and following the MTB procedure. An estimation of the likelihood of successful recanalization can support treatment decision-making. In this study, we proposed a fully automated prediction of a patient's recanalization score using pre-treatment CT and CTA imaging. We designed a spatial cross attention network (SCANet) that utilizes vision transformers to localize to pertinent slices and brain regions. Our top model achieved an average cross-validated ROC-AUC of 77.33 $\pm$ 3.9\%. This is a promising result that supports future applications of deep learning on CT and CTA for the identification of eligible AIS patients for MTB.
翻译:对于急性心血管中风(AIS)大容器封闭症患者,临床医生必须决定机械性脑切除(MTB)的好处是否大于侵入性程序后的风险和潜在并发症; 预处理计算透视(CT)和血管造影(CTA)被广泛用于脑血管隔离特征的特征; 如果病人被认为符合资格,则将使用脑血管切除(MITI)评分的改良治疗分来分分分,以确定在整个和在MTB程序之后血液流动恢复得如何良好; 估计成功再扫描的可能性可以支持治疗决策; 在这项研究中,我们提议使用预处理CT和CTA成像对病人再扫描得分进行完全自动预测; 我们设计了一个空间交叉关注网,利用视觉变异器将有关切片和脑部区域本地化; 我们的顶级模型取得了77.33 $\ pm$3.9 ⁇ 。 这是支持未来应用深入学习抗体外科综合症和CTA的诊断结果。