The spatial-photonic Ising machine (SPIM) [D. Pierangeli et al., Phys. Rev. Lett. 122, 213902 (2019)] is a promising optical architecture utilizing spatial light modulation for solving large-scale combinatorial optimization problems efficiently. However, the SPIM can accommodate Ising problems with only rank-one interaction matrices, which limits its applicability to various real-world problems. In this Letter, we propose a new computing model for the SPIM that can accommodate any Ising problem without changing its optical implementation. The proposed model is particularly efficient for Ising problems with low-rank interaction matrices, such as knapsack problems. Moreover, the model acquires learning ability and can thus be termed a spatial-photonic Boltzmann machine (SPBM). We demonstrate that learning, classification, and sampling of the MNIST handwritten digit images are achieved efficiently using SPBMs with low-rank interactions. Thus, the proposed SPBM model exhibits higher practical applicability to various problems of combinatorial optimization and statistical learning, without losing the scalability inherent in the SPIM architecture.
翻译:空间光学伊辛机(SPIM)[D. Pierangeli等人,Phys. Rev. Lett. 122, 213902(2019)]是一种有前途的光学架构,利用空间光调制来高效地解决大规模组合优化问题。然而,SPIM只能容纳具有秩一交互矩阵的伊辛问题,这限制了其在各种实际问题中的适用性。在本文中,我们提出了一种新的计算模型,通过光学实现可以解决任何伊辛问题而不改变其光学实现方式。所提出的模型特别适用于具有低秩交互矩阵(例如背包问题)的伊辛问题。此外,该模型具有学习能力,因此可以被称为空间光学Boltzmann机(SPBM)。我们展示了使用具有低秩交互的SPBM高效地实现了MNIST手写数字图像的学习、分类和采样。因此,所提出的SPBM模型具有更高的实际适用性,适用于各种组合优化和统计学习问题,而不失去SPIM体系结构固有的可扩展性。