We reformulate models in epidemiology and population dynamics in terms of probability distributions. This allows us to construct the Fisher information, which we interpret as the metric of a one-dimensional differentiable manifold. For systems that can be effectively described by a single degree of freedom, we show that their time evolution is fully captured by this metric. In this way, we discover universal features across seemingly very different models. This further motivates a reorganisation of the dynamics around zeroes of the Fisher metric, corresponding to extrema of the probability distribution. Concretely, we propose a simple form of the metric for which we can analytically solve the dynamics of the system that well approximates the time evolution of various established models in epidemiology and population dynamics, thus providing a unifying framework.
翻译:暂无翻译