To develop a sound-monitoring system for machines, a method for detecting anomalous sound under domain shifts is proposed. A domain shift occurs when a machine's physical parameters change. Because a domain shift changes the distribution of normal sound data, conventional unsupervised anomaly detection methods can output false positives. To solve this problem, the proposed method constrains some latent variables of a normalizing flows (NF) model to represent physical parameters, which enables disentanglement of the factors of domain shifts and learning of a latent space that is invariant with respect to these domain shifts. Anomaly scores calculated from this domain-shift-invariant latent space are unaffected by such shifts, which reduces false positives and improves the detection performance. Experiments were conducted with sound data from a slide rail under different operation velocities. The results show that the proposed method disentangled the velocity to obtain a latent space that was invariant with respect to domain shifts, which improved the AUC by 13.2% for Glow with a single block and 2.6% for Glow with multiple blocks.
翻译:为了开发机器的健全监测系统, 提议了一种在域变换下探测异常声音的方法。 当机器物理参数变化时, 就会发生域变换。 因为域变换会改变正常声音数据的分布, 常规的不受监督的异常探测方法可以产生假阳性。 为了解决这个问题, 提议的方法限制了正常流动模式中的一些潜在变量, 以代表物理参数, 从而能够分解域变换和学习与域变换相关的潜在空间的因素。 从这个域变换- 变量潜伏空间计算出的异常分数不受这种变换的影响, 这会减少假阳性并改进探测性能。 实验是在不同的操作速度下利用幻灯轨的可靠数据进行的。 结果表明, 拟议的方法会解开速度, 以获得与域变换相关的潜伏空间, 从而用单一块和多个区块的Glow 使AUCS提高13.2%, Glow 提高2.6%。