Aspect Sentiment Triplet Extraction (ASTE) aims to extract triplets from a sentence, including target entities, associated sentiment polarities, and opinion spans which rationalize the polarities. Existing methods are short on building correlation between target-opinion pairs, and neglect the mutual interference among different sentiment triplets. To address these issues, we utilize a two-stage framework to enhance the correlation between targets and opinions: at stage one, we extract targets and opinions through sequence tagging; then we append a group of artificial tags named Perceivable Pair, which indicate the span of a specific target-opinion tuple, to the input sentence to obtain closer correlated target-opinion pair representation. Meanwhile, we reduce the negative interference between triplets by restricting tokens' attention field. Finally, the polarity is identified according to the representation of the Perceivable Pair. We conduct experiments on four datasets, and the experimental results show the effectiveness of our model.
翻译:Aspect Sentiment Triplet Expliton(ASTE) 旨在从一个句子中提取三重元素,包括目标实体、相关情绪极点和使极点合理化的观点。 现有的方法在目标对对口之间建立相关性方面是不足的,而忽视了不同情绪三重体之间的相互干扰。 为了解决这些问题,我们利用一个两阶段框架来增强目标与观点之间的相互关系: 在第一阶段,我们通过序列标记来提取目标和意见; 然后我们把一组名为 Perevibable Pair 的人工标签附在输入句子上, 显示特定目标对口的宽度, 以获得更接近的目标对口代表。 同时, 我们通过限制象征性的注意场来减少三对口之间的负面干扰。 最后, 根据 Perceable Pair 的代表情况来确定极性。 我们在四个数据集上进行实验, 实验结果显示我们的模型的有效性 。