Aspect-level sentiment classification (ALSC) aims at identifying the sentiment polarity of a specified aspect in a sentence. ALSC is a practical setting in aspect-based sentiment analysis due to no opinion term labeling needed, but it fails to interpret why a sentiment polarity is derived for the aspect. To address this problem, recent works fine-tune pre-trained Transformer encoders for ALSC to extract an aspect-centric dependency tree that can locate the opinion words. However, the induced opinion words only provide an intuitive cue far below human-level interpretability. Besides, the pre-trained encoder tends to internalize an aspect's intrinsic sentiment, causing sentiment bias and thus affecting model performance. In this paper, we propose a span-based anti-bias aspect representation learning framework. It first eliminates the sentiment bias in the aspect embedding by adversarial learning against aspects' prior sentiment. Then, it aligns the distilled opinion candidates with the aspect by span-based dependency modeling to highlight the interpretable opinion terms. Our method achieves new state-of-the-art performance on five benchmarks, with the capability of unsupervised opinion extraction.


翻译:视觉感官分类( ALSC) 旨在识别某句中特定内容的情绪极极性。 ALSC 是一个基于侧面情绪分析的实用设置, 原因是不需要用意见术语来标注, 但无法解释为什么从这个方面产生情绪极性。 为了解决这个问题, 最近为 ALSC 提取一个能定位意见词的侧心型依赖树而做的微调前训练变异器编码器, 以便提取一个能定位意见词的侧心型树。 但是, 引出的意见单词只提供了远远低于人级可解释性的直觉提示。 此外, 预先训练的编码器倾向于将某部分的内在情感内在内化, 造成情绪偏向, 从而影响模型性能。 在本文中, 我们提出了一个基于跨面反偏见的表达学习框架。 它首先消除了对抗性学习对先前情绪的方面产生的情绪偏差。 然后, 它通过基于跨度的模型来突出可解释的见解术语, 将精细的见解候选人与这个方面相匹配。 我们的方法在五个基准上实现了新的艺术状态, 并具有不受监督的提取意见的能力 。

5
下载
关闭预览

相关内容

情感分类是对带有感情色彩的主观性文本进行分析、推理的过程,即分析对说话人的态度,倾向正面,还是反面。它与传统的文本主题分类又不相同,传统主题分类是分析文本讨论的客观内容,而情感分类是要从文本中得到它是否支持某种观点的信息。
专知会员服务
90+阅读 · 2021年6月29日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
91+阅读 · 2020年7月4日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Aspect-Opinion对抽取
深度学习自然语言处理
9+阅读 · 2020年8月15日
【情感分析】基于Aspect的情感分析模型总结(一)
深度学习自然语言处理
8+阅读 · 2020年3月1日
细粒度情感分析任务(ABSA)的最新进展
PaperWeekly
18+阅读 · 2020年1月3日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Simple Recurrent Unit For Sentence Classification
哈工大SCIR
6+阅读 · 2017年11月29日
原创 | Attention Modeling for Targeted Sentiment
黑龙江大学自然语言处理实验室
25+阅读 · 2017年11月5日
VIP会员
相关VIP内容
专知会员服务
90+阅读 · 2021年6月29日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
91+阅读 · 2020年7月4日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
相关资讯
Aspect-Opinion对抽取
深度学习自然语言处理
9+阅读 · 2020年8月15日
【情感分析】基于Aspect的情感分析模型总结(一)
深度学习自然语言处理
8+阅读 · 2020年3月1日
细粒度情感分析任务(ABSA)的最新进展
PaperWeekly
18+阅读 · 2020年1月3日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Simple Recurrent Unit For Sentence Classification
哈工大SCIR
6+阅读 · 2017年11月29日
原创 | Attention Modeling for Targeted Sentiment
黑龙江大学自然语言处理实验室
25+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员