Aspect-based sentiment analysis (ABSA), which aims to identify fine-grained opinion polarity towards a specific aspect, is a challenging subtask of sentiment analysis (SA). In this paper, we construct an auxiliary sentence from the aspect and convert ABSA to a sentence-pair classification task, such as question answering (QA) and natural language inference (NLI). We fine-tune the pre-trained model from BERT and achieve new state-of-the-art results on SentiHood and SemEval-2014 Task 4 datasets.
翻译:基于外观的情绪分析(ABSA ), 目的是从特定方面辨别细微分化的观点极性,这是一个具有挑战性的情感分析子任务(SA ) 。 在本文中,我们从这一方面构建了一个辅助性句子,并将ABSA 转换成一个句子分类任务,如问答(QA)和自然语言推论(NLI ) 。 我们从BERT中微调了预先培训的模型,并在SentiHood和SemEval 4任务数据集中取得了新的最新结果。