Target-based sentiment analysis or aspect-based sentiment analysis (ABSA) refers to addressing various sentiment analysis tasks at a fine-grained level, which includes but is not limited to aspect extraction, aspect sentiment classification, and opinion extraction. There exist many solvers of the above individual subtasks or a combination of two subtasks, and they can work together to tell a complete story, i.e. the discussed aspect, the sentiment on it, and the cause of the sentiment. However, no previous ABSA research tried to provide a complete solution in one shot. In this paper, we introduce a new subtask under ABSA, named aspect sentiment triplet extraction (ASTE). Particularly, a solver of this task needs to extract triplets (What, How, Why) from the inputs, which show WHAT the targeted aspects are, HOW their sentiment polarities are and WHY they have such polarities (i.e. opinion reasons). For instance, one triplet from "Waiters are very friendly and the pasta is simply average" could be ('Waiters', positive, 'friendly'). We propose a two-stage framework to address this task. The first stage predicts what, how and why in a unified model, and then the second stage pairs up the predicted what (how) and why from the first stage to output triplets. In the experiments, our framework has set a benchmark performance in this novel triplet extraction task. Meanwhile, it outperforms a few strong baselines adapted from state-of-the-art related methods.
翻译:基于目标的情绪分析或基于情绪情绪分析(ABSA) 指在细微的层次上处理各种情绪分析任务(ABSA), 包括但不仅限于提取、 情绪分类和观点提取。 上面的单个子任务有许多解决方案, 或者将两个子任务组合起来, 他们可以一起工作来讲一个完整的故事, 即讨论的方面, 对它的情绪, 以及情绪的原因。 但是, 以前的ABSA 研究没有试图一次提供一个完整的解决方案 。 在本文中, 我们引入了ABSA 下的新子任务, 名为三重情绪提取( ASTE ) 。 特别是, 这个任务的一个解决方案的解决方案需要从投入中提取三重( 什么, 如何, 如何, 为什么) 三个子任务组合( 意见原因) 。 例如, 一个来自“ 用户非常友好的, 并且过去一个普通的” 的三重任务。 在第一个阶段里, 我们提出一个跨阶段框架, 来预测这个阶段里, 如何从这个阶段里程里, 预示这个任务。