Domain adaptation tasks such as cross-domain sentiment classification aim to utilize existing labeled data in the source domain and unlabeled or few labeled data in the target domain to improve the performance in the target domain via reducing the shift between the data distributions. Existing cross-domain sentiment classification methods need to distinguish pivots, i.e., the domain-shared sentiment words, and non-pivots, i.e., the domain-specific sentiment words, for excellent adaptation performance. In this paper, we first design a Category Attention Network (CAN), and then propose a model named CAN-CNN to integrate CAN and a Convolutional Neural Network (CNN). On the one hand, the model regards pivots and non-pivots as unified category attribute words and can automatically capture them to improve the domain adaptation performance; on the other hand, the model makes an attempt at interpretability to learn the transferred category attribute words. Specifically, the optimization objective of our model has three different components: 1) the supervised classification loss; 2) the distributions loss of category feature weights; 3) the domain invariance loss. Finally, the proposed model is evaluated on three public sentiment analysis datasets and the results demonstrate that CAN-CNN can outperform other various baseline methods.
翻译:跨域情绪分类等主要适应任务,如跨域情绪分类,目的是利用源域现有的标签数据,以及目标域中未贴标签或很少贴标签的数据,通过减少数据分布之间的转移,改善目标域的性能。现有的跨域情绪分类方法需要区分分流,即域共享情绪单词和非分流,即域共享情绪单词,以获得良好的适应性表现。在本文件中,我们首先设计了一个分类注意网络(CAN),然后提出一个名为CAN-CNN的模型,以整合CAN和动态神经网络(CNN)。一方面,模型将分流和非分流作为统一的分类属性单词,并可以自动捕捉它们来改进域的适应性能;另一方面,模型试图解释是否可学习转移的类别属性单词。具体地说,我们模型的优化目标有三个不同的组成部分:1) 监督分类损失;2) 分类特征重量的分布损失;3) 域域网损失。最后,拟议的模型可以显示三种模型的模型,可以显示其他分析结果。