We investigate Bayesian predictions for Wishart distributions by using the Kullback-Leibler divergence. We compare between the Bayesian predictive distributions based on a recently introduced class of prior distributions, called the family of enriched standard conjugate priors, which includes the Jeffreys prior, the reference prior, and the right invariant prior. We explicitly calculate the risks of Bayesian predictive distributions without using asymptotic expansions and clarify the dependency on the sizes of current and future observations. We also construct a minimax predictive distribution with a constant risk and prove this predictive distribution is not admissible.
翻译:我们通过使用库尔贝克-利伯尔差异来调查巴耶斯预测Wishart分布的预测。 我们比较了巴耶斯预测分布,这些预测分布基于最近推出的先期分配类别,称为浓缩标准共产前期标准分配体系,包括前杰弗里人、前参照人和前置权利。 我们明确计算了巴耶斯预测分布的风险,而没有使用无药可施展,并澄清了对当前和未来观测规模的依赖性。 我们还建造了一个持续风险的小型预测分布,并证明这种预测分布是不可接受的。