Principal Component Analysis (PCA) and its exponential family extensions have three components: observations, latents and parameters of a linear transformation. We consider a generalised setting where the canonical parameters of the exponential family are a nonlinear transformation of the latents. We show explicit relationships between particular neural network architectures and the corresponding statistical models. We find that deep equilibrium models -- a recently introduced class of implicit neural networks -- solve maximum a-posteriori (MAP) estimates for the latents and parameters of the transformation. Our analysis provides a systematic way to relate activation functions, dropout, and layer structure, to statistical assumptions about the observations, thus providing foundational principles for unsupervised DEQs. For hierarchical latents, individual neurons can be interpreted as nodes in a deep graphical model. Our DEQ feature maps are end-to-end differentiable, enabling fine-tuning for downstream tasks.
翻译:主要元件分析(PCA)及其指数家庭扩展有三个组成部分:线性变换的观测、潜值和参数。我们考虑一个一般化的设置,在这个设置中,指数家庭的罐头参数是潜值的非线性变换。我们展示了特定神经网络结构与相应统计模型之间的明确关系。我们发现深平衡模型 -- -- 最近引入的隐性神经网络类别 -- -- 解决了变换的潜值和参数的最大隐性(MAP)估计数。我们的分析提供了一个系统化的方法,将激活功能、辍学和层结构与观察的统计假设联系起来,从而为未经监督的DEQ提供基本原则。对于等级潜值而言,单个神经元可以被解释为深层图形模型中的节点。我们的DEQ特征图是端到端的,能够对下游任务进行微调。