Machine learning algorithms have been successfully used to approximate nonlinear maps under weak assumptions on the structure and properties of the maps. We present deep neural networks using dense and convolutional layers to solve an inverse problem, where we seek to estimate parameters of a FitzHugh-Nagumo model, which consists of a nonlinear system of ordinary differential equations (ODEs). We employ the neural networks to approximate reconstruction maps for model parameter estimation from observational data, where the data comes from the solution of the ODE and takes the form of a time series representing dynamically spiking membrane potential of a biological neuron. We target this dynamical model because of the computational challenges it poses in an inference setting, namely, having a highly nonlinear and nonconvex data misfit term and permitting only weakly informative priors on parameters. These challenges cause traditional optimization to fail and alternative algorithms to exhibit large computational costs. We quantify the prediction errors of model parameters obtained from the neural networks and investigate the effects of network architectures with and without the presence of noise in observational data. We generalize our framework for neural network-based reconstruction maps to simultaneously estimate ODE parameters and parameters of autocorrelated observational noise. Our results demonstrate that deep neural networks have the potential to estimate parameters in dynamical models and stochastic processes, and they are capable of predicting parameters accurately for the FitzHugh-Nagumo model.


翻译:在对地图的结构和特性的假设薄弱的情况下,我们成功地利用机器学习算法来估计非线性地图。我们用密集和进化层来展示深神经网络,以解决一个反向问题,我们试图估算菲茨-休格-纳古莫模型的参数,该模型由普通差异方程式的非线性系统组成。我们利用神经网络来根据观测数据来估计模型参数的重建地图,这些数据来自ODE的解决方案,并采用代表生物神经神经动态地闪烁潜力的时间序列的形式。我们把这一动态模型作为目标,因为它在推论设置中构成计算挑战,即高度非线性和非线性数据术语不匹配,并且只允许薄弱的参数前信息化。这些挑战导致传统的优化失败和替代算法以显示巨大的计算成本。我们量化了从神经网络获得的模型参数的预测错误,并调查了网络结构的影响,以及观测数据中的噪音的存在。我们用于估算神经动力网络的精确度参数框架和动态网络的模型的同步性参数重建,我们同时展示了我们用于预测模型和动态网络的逻辑性模型的系统化模型的模型。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月28日
Arxiv
6+阅读 · 2018年10月3日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员