In this paper, we present Demystify, a general tool for creating human-interpretable step-by-step explanations of how to solve a wide range of pen and paper puzzles from a high-level logical description. Demystify is based on Minimal Unsatisfiable Subsets (MUSes), which allow Demystify to solve puzzles as a series of logical deductions by identifying which parts of the puzzle are required to progress. This paper makes three contributions over previous work. First, we provide a generic input language, based on the Essence constraint language, which allows us to easily use MUSes to solve a much wider range of pen and paper puzzles. Second, we demonstrate that the explanations that Demystify produces match those provided by humans by comparing our results with those provided independently by puzzle experts on a range of puzzles. We compare Demystify to published guides for solving a range of different pen and paper puzzles and show that by using MUSes, Demystify produces solving strategies which closely match human-produced guides to solving those same puzzles (on average 89% of the time). Finally, we introduce a new randomised algorithm to find MUSes for more difficult puzzles. This algorithm is focused on optimised search for individual small MUSes.


翻译:在本文中, 我们介绍Demystify( Demystify), 这是一种用于从高层次逻辑描述中解开大量笔和纸质谜题的通用工具, 用于从高层次逻辑描述中解开大量笔和纸质谜题。 Demystify( MUSes) 是基于最小不满意的子集( MUSes), 使得解密可以将谜题解开为一系列逻辑推理的序列。 我们比较解谜题中哪些部分需要向前推进。 本文比先前的工作做了三点贡献 。 首先, 我们提供了一种通用输入语言, 以 Esence 约束语言为基础, 使我们能够很容易地使用 MUSes 解开更多笔和纸质谜题题。 其次, 我们通过比较解谜小解谜小解谜小解谜( 平均为89% ) 和解谜专家在一系列解谜中独立提供的结果, 来解谜题。 我们比较解谜类比已出版的指南, 解决不同笔和纸质谜题题, 并显示使用 Mmystifififific( imalimalimalimalimal) as) 等新指南的策略与解谜题解的解谜题( 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
Top
微信扫码咨询专知VIP会员