In the study of Ising models on large locally tree-like graphs, in both rigorous and non-rigorous methods one is often led to understanding the so-called belief propagation distributional recursions and its fixed points. We prove that there is at most one non-trivial fixed point for Ising models with zero or certain random external fields. Previously this was only known for sufficiently ``low-temperature'' models. Our main innovation is in applying information-theoretic ideas of channel comparison leading to a new metric (degradation index) between binary-input-symmetric (BMS) channels under which the Belief Propagation (BP) operator is a strict contraction (albeit non-multiplicative). A key ingredient of our proof is a strengthening of the classical stringy tree lemma of (Evans-Kenyon-Peres-Schulman'00). Our result simultaneously closes the following 6 conjectures in the literature: 1) independence of robust reconstruction accuracy to leaf noise in broadcasting on trees (Mossel-Neeman-Sly'16); 2) uselessness of global information for a labeled 2-community stochastic block model, or 2-SBM (Kanade-Mossel-Schramm'16); 3) optimality of local algorithms for 2-SBM under noisy side information (Mossel-Xu'16); 4) uniqueness of BP fixed point in broadcasting on trees in the Gaussian (large degree) limit (ibid); 5) boundary irrelevance in broadcasting on trees (Abbe-Cornacchia-Gu-P.'21); 6) characterization of entropy (and mutual information) of community labels given the graph in 2-SBM (ibid).


翻译:在大型本地树类图案的Ising模型研究中,在严格和非严格的方法中,人们往往能够理解所谓的信仰传播分布循环及其固定点。我们证明,在零或某些随机外部字段的Ising模型中,最多有一个非三边固定点。以前,这只是以“低温-高温-高频-沙尔曼”模型而闻名的。我们的主要创新是应用频道比较的信息理论性想法,从而导致在二进制对称(BMS)频道之间形成一个新的衡量标准(下降指数),而信仰促进(BBP)频道运行者是严格的收缩(尽管非重复性)。我们的证据中的一个关键要素是加强古典的Tringyle树脂质(Evans-Kenyon-Peres-Schulman'00 模型)。我们的结果同时关闭了文献中以下6个侧端导线:1) 树上播音(Mossel-Neman-Sly) 的深度重建信息的独立性(Mosel-National-Seriaal-Serviewal ral ral ral ral ral ral 16);2-S inal-S bal-S bal-salisal-sal-sildalisal-s balisal-sildalisal-s bal-s in balisalisalisalisalisal-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx,在2,在2,在2xxI),在2xxxIalisalisalisal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-salisalisalisalisal-

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
25+阅读 · 2021年4月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员