In the study of Ising models on large locally tree-like graphs, in both rigorous and non-rigorous methods one is often led to understanding the so-called belief propagation distributional recursions and its fixed points. We prove that there is at most one non-trivial fixed point for Ising models with zero or certain random external fields. Previously this was only known for sufficiently ``low-temperature'' models. Our main innovation is in applying information-theoretic ideas of channel comparison leading to a new metric (degradation index) between binary-input-symmetric (BMS) channels under which the Belief Propagation (BP) operator is a strict contraction (albeit non-multiplicative). A key ingredient of our proof is a strengthening of the classical stringy tree lemma of (Evans-Kenyon-Peres-Schulman'00). Our result simultaneously closes the following 6 conjectures in the literature: 1) independence of robust reconstruction accuracy to leaf noise in broadcasting on trees (Mossel-Neeman-Sly'16); 2) uselessness of global information for a labeled 2-community stochastic block model, or 2-SBM (Kanade-Mossel-Schramm'16); 3) optimality of local algorithms for 2-SBM under noisy side information (Mossel-Xu'16); 4) uniqueness of BP fixed point in broadcasting on trees in the Gaussian (large degree) limit (ibid); 5) boundary irrelevance in broadcasting on trees (Abbe-Cornacchia-Gu-P.'21); 6) characterization of entropy (and mutual information) of community labels given the graph in 2-SBM (ibid).
翻译:在大型本地树类图案的Ising模型研究中,在严格和非严格的方法中,人们往往能够理解所谓的信仰传播分布循环及其固定点。我们证明,在零或某些随机外部字段的Ising模型中,最多有一个非三边固定点。以前,这只是以“低温-高温-高频-沙尔曼”模型而闻名的。我们的主要创新是应用频道比较的信息理论性想法,从而导致在二进制对称(BMS)频道之间形成一个新的衡量标准(下降指数),而信仰促进(BBP)频道运行者是严格的收缩(尽管非重复性)。我们的证据中的一个关键要素是加强古典的Tringyle树脂质(Evans-Kenyon-Peres-Schulman'00 模型)。我们的结果同时关闭了文献中以下6个侧端导线:1) 树上播音(Mossel-Neman-Sly) 的深度重建信息的独立性(Mosel-National-Seriaal-Serviewal ral ral ral ral ral ral 16);2-S inal-S bal-S bal-salisal-sal-sildalisal-s balisal-sildalisal-s bal-s in balisalisalisalisalisal-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx,在2,在2,在2xxI),在2xxxIalisalisalisal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-salisalisalisalisal-