Computing approximate shortest paths in the dynamic streaming setting is a fundamental challenge that has been intensively studied during the last decade. Currently existing solutions for this problem either build a sparse multiplicative spanner of the input graph and compute shortest paths in the spanner offline, or compute an exact single source BFS tree. Solutions of the first type are doomed to incur a stretch-space tradeoff of $2\kappa-1$ versus $n^{1+1/\kappa}$, for an integer parameter $\kappa$. (In fact, existing solutions also incur an extra factor of $1+\epsilon$ in the stretch for weighted graphs, and an additional factor of $\log^{O(1)}n$ in the space.) The only existing solution of the second type uses $n^{1/2 - O(1/\kappa)}$ passes over the stream (for space $O(n^{1+1/\kappa})$), and applies only to unweighted graphs. In this paper we show that $(1+\epsilon)$-approximate single-source shortest paths can be computed in this setting with $\tilde{O}(n^{1+1/\kappa})$ space using just \emph{constantly} many passes in unweighted graphs, and polylogarithmically many passes in weighted graphs (assuming $\epsilon$ and $\kappa$ are constant). Moreover, in fact, the same result applies for multi-source shortest paths, as long as the number of sources is $O(n^{1/\kappa})$. We achieve these results by devising efficient dynamic streaming constructions of $(1 + \epsilon, \beta)$-spanners and hopsets. We believe that these constructions are of independent interest.


翻译:在动态流环境中, 近似最短的计算路径是一个根本性的挑战, 在过去十年中已经深入研究过 。 目前, 这个问题的解决方案要么在输入图上构建一个稀多的多倍的扩展范围, 并且计算一个精确的单一源 BFS 树 。 第一类解决方案注定要产生一个2\ kapa-1美元相对于$n ⁇ 1+1/\ kappa}$的伸缩空间交易, 用于一个整数参数 $\ kappa$ 。 ( 事实上, 现有的解决方案在加权图中还产生额外系数$1\\ epslon$, 在空间线外计算一个额外的系数$\ log\\ ol1} 或计算最短的路径 $ 。 第二种类型的解决方案只有$% 2 - O( 1/\\ kappappa)} $( 美元相对于$% 1\\\\ kappappa} 美元, 并且只适用于未加权的图表 。 在本文中, $( 1\ eplon) 美元 美元 美元 和 美元 美元 美元 美元 美元 直径 的原始路径上, 数据 将实现 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月1日
On the asymptotic behavior of bubble date estimators
Arxiv
0+阅读 · 2022年9月1日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员