Legal judgment Prediction (LJP), aiming to predict a judgment based on fact descriptions, serves as legal assistance to mitigate the great work burden of limited legal practitioners. Most existing methods apply various large-scale pre-trained language models (PLMs) finetuned in LJP tasks to obtain consistent improvements. However, we discover the fact that the state-of-the-art (SOTA) model makes judgment predictions according to wrong (or non-casual) information, which not only weakens the model's generalization capability but also results in severe social problems like discrimination. Here, we analyze the causal mechanism misleading the LJP model to learn the spurious correlations, and then propose a framework to guide the model to learn the underlying causality knowledge in the legal texts. Specifically, we first perform open information extraction (OIE) to refine the text having a high proportion of causal information, according to which we generate a new set of data. Then, we design a model learning the weights of the refined data and the raw data for LJP model training. The extensive experimental results show that our model is more generalizable and robust than the baselines and achieves a new SOTA performance on two commonly used legal-specific datasets.
翻译:法律判断预测(LJP)旨在预测基于事实描述的判决,作为减轻有限法律从业者繁重工作负担的法律援助,大多数现有方法都采用各种大型预先培训的语言模型(PLMs),对LJP的任务进行微调,以取得一致的改进;然而,我们发现,最先进的(SOTA)模型根据错误(或非偶然)信息作出判断预测,这不仅削弱了模型的概括能力,而且造成了歧视等严重的社会问题。在这里,我们分析了误导LJP模型的因果机制,以了解虚假的相互关系,然后提出了一个框架来指导模型,学习法律文本中的基本因果关系知识。具体地说,我们首先进行公开的信息提取(OIEE),以完善具有高度因果关系信息的文本,据此我们产生一套新的数据。然后,我们设计了一个模型,用来学习改进的数据的份量和LJP模型培训的原始数据。广泛的实验结果显示,我们的模型比基准更加宽泛和坚固,并实现了两个共同使用的法律具体数据。