This letter introduces a new denoiser that modifies the structure of denoising autoencoder (DAE), namely noise learning based DAE (nlDAE). The proposed nlDAE learns the noise of the input data. Then, the denoising is performed by subtracting the regenerated noise from the noisy input. Hence, nlDAE is more effective than DAE when the noise is simpler to regenerate than the original data. To validate the performance of nlDAE, we provide three case studies: signal restoration, symbol demodulation, and precise localization. Numerical results suggest that nlDAE requires smaller latent space dimension and smaller training dataset compared to DAE.
翻译:此信引入了一个新的去诺化器,它改变了解除自动编码器(DAE)的结构,即以噪音学习为基础的DAE(nlDAE),拟议的nlDAE可以了解输入数据的噪音。然后,通过从噪音输入中减去再生的噪音来进行去诺化。因此,NlDAE比DAE更有效,因为噪音比原始数据更容易再生。为了验证nlDAE的性能,我们提供了三个案例研究:信号恢复、符号降低和精确的本地化。数字结果表明,nlDAE需要比DAE更小的潜在空间尺寸和培训数据集。