Combination drug therapies are treatment regimens that involve two or more drugs, administered more commonly for patients with cancer, HIV, malaria, or tuberculosis. Currently there are over 350K articles in PubMed that use the "combination drug therapy" MeSH heading with at least 10K articles published per year over the past two decades. Extracting combination therapies from scientific literature inherently constitutes an $n$-ary relation extraction problem. Unlike in the general $n$-ary setting where $n$ is fixed (e.g., drug-gene-mutation relations where $n=3$), extracting combination therapies is a special setting where $n \geq 2$ is dynamic, depending on each instance. Recently, Tiktinsky et al. (NAACL 2022) introduced a first of its kind dataset, CombDrugExt, for extracting such therapies from literature. Here, we use a sequence-to-sequence style end-to-end extraction method to achieve an F1-Score of $66.7\%$ on the CombDrugExt test set for positive (or effective) combinations. This is an absolute $\approx 5\%$ F1-score improvement even over the prior best relation classification score with spotted drug entities (hence, not end-to-end). Thus our effort introduces a state-of-the-art first model for end-to-end extraction that is already superior to the best prior non end-to-end model for this task. Our model seamlessly extracts all drug entities and relations in a single pass and is highly suitable for dynamic $n$-ary extraction scenarios.


翻译:组合药物疗法是涉及两种或两种以上药物的治疗方案,常用于癌症、艾滋病、疟疾或结核病等患者的治疗。目前,PubMed 中至少有 35 万篇文章使用了“组合药物疗法” MeSH heading,过去二十年每年至少有 1 万篇文章被发表。从科学文献中提取组合疗法本质上构成了一个 $n$ 元关系抽取问题。与普通的 $n$ 元关系不同,其中 $n$ 是固定的(例如,$n=3$ 的药物-基因-突变关系),提取组合疗法是一个特殊的设置,其中 $n\ge2$ 是动态的,取决于每个实例。近期,Tiktinsky et al.(NAACL 2022)推出了第一个数据集 CombDrugExt,用于从文献中提取这种疗法。在此基础上,我们使用序列到序列风格的端到端抽取方法,在 CombDrugExt 测试集上实现了 $66.7\%$ 的 F1 值,标志着本文端到端抽取模型是首个最新的,已优于此前最佳非端到端模型的态度。我们的模型可以无缝抽取所有药物实体和关系,并非常适合动态的 $n$ 元抽取场景。

0
下载
关闭预览

相关内容

【Uber AI新论文】持续元学习,Learning to Continually Learn
专知会员服务
36+阅读 · 2020年2月27日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月18日
VIP会员
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员