Sequential decision making significantly speeds up research and is more cost-effective compared to fixed-n methods. We present a method for sequential decision making for stratified count data that retains Type-I error guarantee or false discovery rate under optional stopping, using e-variables. We invert the method to construct stratified anytime-valid confidence sequences, where cross-talk between subpopulations in the data can be allowed during data collection to improve power. Finally, we combine information collected in separate subpopulations through pseudo-Bayesian averaging and switching to create effective estimates for the minimal, mean and maximal treatment effects in the subpopulations.
翻译:序列决策极大地加快了研究,并且比固定方法更具成本效益。我们提出了一个方法,用于对分层计数数据进行顺序决策,保留了I型错误保证或假发现率,使用电子可变性可选停止。我们颠倒了构建分层定时有效信任序列的方法,在数据收集期间,允许数据中的亚人口群体进行交叉交谈,以提高权力。最后,我们通过假Bayesian平均和转换,将通过假Bayesian平均和不同子人口群体收集的信息合并起来,为子群体的最低、中值和最高处理效应提供有效估计。