Long-term autonomy of robotic systems implicitly requires dependable platforms that are able to naturally handle hardware and software faults, problems in behaviors, or lack of knowledge. Model-based dependable platforms additionally require the application of rigorous methodologies during the system development, including the use of correct-by-construction techniques to implement robot behaviors. As the level of autonomy in robots increases, so do the cost of offering guarantees about the dependability of the system. Certifiable dependability of autonomous robots, we argue, can benefit from formal models of the integration of several cognitive functions, knowledge processing, reasoning, and meta-reasoning. Here we put forward the case for a generative model of cognitive architectures for autonomous robotic agents that subscribes to the principles of model-based engineering and certifiable dependability, autonomic computing, and knowledge-enabled robotics.
翻译:机器人系统的长期自主性隐含地要求可靠的平台,这些平台能够自然地处理硬件和软件的缺陷、行为问题或缺乏知识。基于模型的可靠平台还要求在系统开发过程中应用严格的方法,包括使用整洁的逐项技术来实施机器人行为。随着机器人的自主性水平的提高,为系统可靠性提供保障的成本也随之增加。我们认为,自主机器人的可证实可靠性可以从若干认知功能、知识处理、推理和元理性整合的正式模型中受益。 在这里,我们提出了为自主机器人代理提供认知结构的基因化模型,该模型符合基于模型的工程和可验证可靠性、自动计算和知识驱动机器人的原则。