Two genomes over the same set of gene families form a canonical pair when each of them has exactly one gene from each family. Different distances of canonical genomes can be derived from a structure called breakpoint graph, which represents the relation between the two given genomes as a collection of cycles of even length and paths. Then, the breakpoint distance is equal to n - (c_2 + p_0/2), where n is the number of genes, c_2 is the number of cycles of length 2 and p_0 is the number of paths of length 0. Similarly, when the considered rearrangements are those modeled by the double-cut-and-join (DCJ) operation, the rearrangement distance is n - (c + p_e/2), where c is the total number of cycles and p_e is the total number of even paths. The distance formulation is a basic unit for several other combinatorial problems related to genome evolution and ancestral reconstruction, such as median or double distance. Interestingly, both median and double distance problems can be solved in polynomial time for the breakpoint distance, while they are NP-hard for the rearrangement distance. One way of exploring the complexity space between these two extremes is to consider the {\sigma}_k distance, defined to be n - [c_2 + c_4 + ... + c_k + (p_0 + p_2 + ... +p_k)/2], and increasingly investigate the complexities of median and double distance for the {\sigma}_4 distance, then the {\sigma}_6 distance, and so on. While for the median much effort was done in our and in other research groups but no progress was obtained even for the {\sigma}_4 distance, for solving the double distance under {\sigma}_4 and {\sigma}_6 distances we could devise linear time algorithms, which we present here.


翻译:通过一种称为断点图的结构,可以从具有相同基因家族集合的两个基因组中派生出不同的规范化距离,当其中每个基因组都恰好具有一个家族中的基因时,它们形成一个规范化对。断点距离等于n - (c_2 + p_0/2),其中n是基因数量,c_2是长度为2的循环数,p_0是长度为0的路径数。同样,当考虑的重组由双切和连接(DCJ)操作建模时,重新排列距离为n - (c + p_e/2),其中c是循环总数,p_e是偶数路径的总数。距离制定为与基因组演化和祖先重建相关的其他组合问题的基本单位,例如中位数或双距。有趣的是,尽管对于断点距离,中位数和双距问题都可以在多项式时间内解决,但对于重新排列距离而言,它们是NP-hard的。探索这两个极端之间的复杂空间的一种方法是考虑{\sigma}_k距离,定义为n - [c_2 + c_4 + ...+ c_k + (p_0 + p_2 +...+ p_k)/2] ,并逐渐研究{\sigma}_4距离,然后是{\sigma}_6距离等。虽然针对中位数,在我们和其他研究小组中都做出了很大努力,但即使对于{\sigma}_4距离也没有取得任何进展,但我们可以设计出线性时间算法来解决{\sigma}_4和{\sigma}_6距离下的双距问题,我们在此呈现。

0
下载
关闭预览

相关内容

Graph Transformer近期进展
专知会员服务
61+阅读 · 2023年1月5日
JCIM丨DRlinker:深度强化学习优化片段连接设计
专知会员服务
6+阅读 · 2022年12月9日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
47+阅读 · 2022年2月19日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年10月11日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
5+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月8日
Arxiv
0+阅读 · 2023年5月8日
Arxiv
0+阅读 · 2023年5月5日
VIP会员
相关VIP内容
Graph Transformer近期进展
专知会员服务
61+阅读 · 2023年1月5日
JCIM丨DRlinker:深度强化学习优化片段连接设计
专知会员服务
6+阅读 · 2022年12月9日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
47+阅读 · 2022年2月19日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年10月11日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
5+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员