Neural random fields (NRFs), which are defined by using neural networks to implement potential functions in undirected models (sometimes known as energy-based models), provide an interesting family of model spaces for machine learning, besides various directed models such as generative adversarial networks (GANs). In this paper we propose a new approach, the inclusive-NRF approach, to learning NRFs for continuous data (e.g. images), by developing inclusive-divergence minimized auxiliary generators and stochastic gradient sampling. As demonstrations of how the new approach can be flexibly and effectively used, specific inclusive-NRF models are developed and thoroughly evaluated for a number of tasks - unsupervised/supervised image generation, semi-supervised classification and anomaly detection. The proposed models consistently achieve strong experimental results in all these tasks compared to state-of-the-art methods. Remarkably, in addition to superior sample generation, one fundamental additional benefit of our inclusive-NRF approach is that, unlike GANs, it directly provides (unnormalized) density estimate for sample evaluation. With these contributions and results, this paper significantly advances the learning and applications of undirected models to a new level, both theoretically and empirically, which have never been obtained before.


翻译:使用神经网络在无方向模型(有时称为能源模型)中执行潜在功能的神经随机域(NRFs)的定义是,利用神经网络在无方向模型(有时称为以能源为基础的模型)中执行潜在功能,从而提供了一套有趣的模型空间,供机器学习使用,除了各种定向模型,例如基因对抗网络(GANs)之外,还提供了一套有趣的模型空间。在本文件中,我们提出了一种新的方法,即包容性-NRF方法,即包容性-NRF方法,通过开发包容性强的最小辅助生成器和随机梯度取样,学习持续数据(例如图像),从而学习NRFs(NRF)系统。随着新的方法如何灵活和有效地使用,具体的包容性-NRF模型的开发和彻底评估,为一系列任务(不受监督/监督的图像生成、半监督的分类和异常检测)开发并提供了一套有趣的模型。在所有这些任务中,拟议的模型与最新方法相比,始终能够取得强有力的实验结果。 值得注意的是,除了高级样本生成之外,我们的包容性-NRF方法还有一个根本性的额外好处是,它与GANs直接为新的评估提供了(非常规的)密度估计。由于这些贡献和结果,本文在理论上的学习和应用阶段前都未取得过。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
13+阅读 · 2019年1月26日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
19+阅读 · 2018年10月25日
Paraphrase Generation with Deep Reinforcement Learning
Arxiv
11+阅读 · 2018年7月8日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员