The invariance to permutations of the adjacency matrix, i.e., graph isomorphism, is an overarching requirement for Graph Neural Networks (GNNs). Conventionally, this prerequisite can be satisfied by the invariant operations over node permutations when aggregating messages. However, such an invariant manner may ignore the relationships among neighboring nodes, thereby hindering the expressivity of GNNs. In this work, we devise an efficient permutation-sensitive aggregation mechanism via permutation groups, capturing pairwise correlations between neighboring nodes. We prove that our approach is strictly more powerful than the 2-dimensional Weisfeiler-Lehman (2-WL) graph isomorphism test and not less powerful than the 3-WL test. Moreover, we prove that our approach achieves the linear sampling complexity. Comprehensive experiments on multiple synthetic and real-world datasets demonstrate the superiority of our model.
翻译:相邻矩阵的变异性,即图形等形态,是图形神经网络(GNNS)的首要要求。 公约规定,在汇总信息时,对节点变异性操作可以满足这一先决条件。 然而,这种变异性方式可能会忽视相邻节点之间的关系,从而妨碍GNS的表达性。 在这项工作中,我们通过变异组设计一个高效的对调敏感集成机制,捕捉相邻节点之间的对等关系。我们证明我们的方法比二维Weisfeiler-Lehman(2-WL)图形变异性测试(2-WL)强,不小于3WL测试。此外,我们证明我们的方法达到了线性抽样复杂性。多合成和真实世界数据集的全面实验证明了我们模型的优势。