This work introduces Differential Wavelet Amplifier (DWA), a drop-in module for wavelet-based image Super-Resolution (SR). DWA invigorates an approach recently receiving less attention, namely Discrete Wavelet Transformation (DWT). DWT enables an efficient image representation for SR and reduces the spatial area of its input by a factor of 4, the overall model size, and computation cost, framing it as an attractive approach for sustainable ML. Our proposed DWA model improves wavelet-based SR models by leveraging the difference between two convolutional filters to refine relevant feature extraction in the wavelet domain, emphasizing local contrasts and suppressing common noise in the input signals. We show its effectiveness by integrating it into existing SR models, e.g., DWSR and MWCNN, and demonstrate a clear improvement in classical SR tasks. Moreover, DWA enables a direct application of DWSR and MWCNN to input image space, reducing the DWT representation channel-wise since it omits traditional DWT.
翻译:本文引入了差分小波放大器(DWA),这是一种用于基于小波的图像超分辨率(SR)的可插拔模块。DWA振奋了一种最近受到较少关注的方法,即离散小波变换(DWT)。DWT为SR提供了高效的图像表示方式,将其输入的空间范围缩小了4倍,减小了模型的总大小和计算成本,使其成为可持续ML的有吸引力的方法。我们提出的DWA模型通过利用两个卷积滤波器之间的差异来提高小波域中相关特征提取,强调局部对比度,并抑制输入信号中的普遍噪声,从而改进了基于小波的SR模型。我们将其集成到现有的SR模型中,例如DWSR和MWCNN,并展示了在经典的SR任务中明显的改进。此外,DWA使得DWSR和MWCNN能够直接应用于输入图像空间,因为它省略了传统的DWT,从而逐渐减少了DWT表示的通道。