In this study, we prove rigourous bounds on the error and stability analysis of deep learning methods for the nonstationary Magneto-hydrodynamics equations. We obtain the approximate ability of the neural network by the convergence of a loss function and the convergence of a Deep Neural Network (DNN) to the exact solution. Moreover, we derive explicit error estimates for the solution computed by optimizing the loss function in the DNN approximation of the solution.
翻译:在这项研究中,我们证明对非静止磁磁流动力等式的深层学习方法的错误和稳定性分析有严格的界限,我们通过将损失功能和深神经网络(DNN)与确切解决方案相融合而获得神经网络的大致能力,此外,我们通过优化解决方案DNN近似值中的损失功能来计算出解决方案的明确错误估计值。</s>