项目名称: 饮用水消毒影响微生物抗药性的分子生态学机理研究

项目编号: No.51278240

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 建筑科学

项目作者: 张徐祥

作者单位: 南京大学

项目金额: 90万元

中文摘要: 抗生素的滥用导致耐药菌与耐药基因广泛传播于水环境中,包括饮用水源和自来水,易引发环境健康风险。消毒工艺是水处理过程中控制致病菌传播的关键步骤,但近期研究表明饮用水消毒可增强微生物耐药性。目前研究工作集中于采用微生物培养和常规分子生物学等方法筛检饮用水中致病菌,该方法存在通量低、系统误差大、操作繁琐等不足,导致无法全面分析饮用水中微生物耐药特征。因此,本项目拟应用Illumina 与454-Pyrosequencing高通量测序技术,从宏基因组学层面研究氯、紫外和臭氧消毒对饮用水中耐药性致病菌和耐药基因分布的影响,分析耐药菌群结构和耐药基因丰度对消毒工艺调控的响应机制;并结合分子克隆、实时定量PCR等技术,研究耐药基因丰度与可移动遗传元件水平的关系、及与菌群结构之间关系;探索消毒影响饮用水中微生物耐药性的潜在分子生态学机理,从而为研发饮用水中耐药致病菌和耐药基因检测和控制技术提供理论指导。

中文关键词: 消毒;耐药菌;耐药基因;高通量测序;宏基因组学

英文摘要: Extensive use of antibiotics stimulates the spread of antibioc resistant bacteria and resistance genes in aquatic environments including drinking water and source water, which induces potential public health risks. Disinfection is a crucial step in drinking water treatment process for the removal of pathogenic bacteria, but recent studies indicate that disinfection can promote microbial resistance to antibiotics. Currently, concerns are focused upon isolation and screening of pathogens in drinking water by using culture-dependent methods or conventional molecular biological techniques. These methods are low-throughput and time-consuming and often have systematic bias, which makes it impossible to comprehensively investigate the microbial resistance situation in dirnking water. In this study, based on metagenomics investigation, high-throughput sequencing techniques including Illumina and 454-pyrosequencing will be applied to assess the effects of chlorination, ultraviolet and ozone disinfection on the occurrence and abundance of antibiotic resistant bacteria and resistance genes in drinking water. Some molecular methods (e.g. molecular cloning and quantitative real-time PCR) will also be included to reveal the correlations between the abundances of antibiotic resistance genes and mobile genetic elements, as well

英文关键词: Disinfection;Antibiotic resistant bacteria;Antibiotic resistance genes;High-throughput sequencing;Metagenomics

成为VIP会员查看完整内容
0

相关内容

清华大学:从单体仿生到群体智能
专知会员服务
72+阅读 · 2022年2月9日
全球自动驾驶战略与政策观察,36页pdf
专知会员服务
58+阅读 · 2022年2月8日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
57+阅读 · 2021年12月6日
专知会员服务
32+阅读 · 2021年5月8日
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
专知会员服务
28+阅读 · 2020年3月6日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
25+阅读 · 2020年2月23日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年5月17日
Arxiv
0+阅读 · 2022年5月17日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
24+阅读 · 2021年3月4日
Arxiv
11+阅读 · 2021年2月17日
小贴士
相关主题
相关VIP内容
清华大学:从单体仿生到群体智能
专知会员服务
72+阅读 · 2022年2月9日
全球自动驾驶战略与政策观察,36页pdf
专知会员服务
58+阅读 · 2022年2月8日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
57+阅读 · 2021年12月6日
专知会员服务
32+阅读 · 2021年5月8日
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
专知会员服务
28+阅读 · 2020年3月6日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
25+阅读 · 2020年2月23日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员