Advanced Persistent Threats (APTs) are continuously evolving, leveraging their stealthiness and persistence to put increasing pressure on current provenance-based Intrusion Detection Systems (IDS). This evolution exposes several critical issues: (1) The dense interaction between malicious and benign nodes within provenance graphs introduces neighbor noise, hindering effective detection; (2) The complex prediction mechanisms of existing APTs detection models lead to the insufficient utilization of prior knowledge embedded in the data; (3) The high computational cost makes detection impractical. To address these challenges, we propose Vodka, a lightweight threat detection system built on a knowledge distillation framework, capable of node-level detection within audit log provenance graphs. Specifically, Vodka applies graph Laplacian regularization to reduce neighbor noise, obtaining smoothed and denoised graph signals. Subsequently, Vodka employs a teacher model based on GNNs to extract knowledge, which is then distilled into a lightweight student model. The student model is designed as a trainable combination of a feature transformation module and a personalized PageRank random walk label propagation module, with the former capturing feature knowledge and the latter learning label and structural knowledge. After distillation, the student model benefits from the knowledge of the teacher model to perform precise threat detection. Finally, Vodka reconstructs attack paths from anomalous nodes, providing insight into the attackers' strategies. We evaluate Vodka through extensive experiments on three public datasets and compare its performance against several state-of-the-art IDS solutions. The results demonstrate that Vodka achieves outstanding detection accuracy across all scenarios and the detection time is 1.4 to 5.2 times faster than the current state-of-the-art methods.
翻译:暂无翻译